Monomial

Is a number, a variable, or the product of a number and one or more variables with whole number exponen

Degree of a Monomial:

Is the sum of the exponents of the variables in the monomial

Monomial	Degree
10	0
3 <i>x</i>	1
$\frac{1}{2}ab^2$	1 + 2 = 3
-1.8 <i>m</i> ⁵	5

Not a monomial	Reason
5 + x	A sum is not a monomial.
$\frac{2}{n}$	A monomial cannot have a variable in the denominator.
4 ^a	A monomial cannot have a variable exponent.
x ⁻¹	The variable must have a whole number exponent.

Polynomial:

Is a monomial or a sum of monomials, each called a term of the polynomial

leading degree

Degree of a Polynomial:

Is the GREATEST degree of its terms

Example #1 - Complete the Table

Expression	Is it a polynomial?	Classify by degree and number of terms
9	Yes	0 degree monomial
$2x^2 + x - 5$	Yes	2nd degree trinomial
$6n^4 - 8^n$	No; variable exponent	
$n^{-2} - 3$	No; negative exponent	,
$7bc^3 + 4b^4c^1$	Yes	5th degreg binomial

Standard Form (Rewriting Polynomials)

the terms (exponents) of the polynomial are ordered from left to right in descending order (the exponents are in order from greatest to least)

Example #2

Example #2
Write the polynomials in standard form and identify the degree and leading coefficient of the polynomial.

1 -4x2+X+9

b) 2x²y² - 8xy (1) 2x2y2-8xy

Adding Polynomials:

Example #3

Find the sum of $(2x^2 - 3x + 5) + (4x^2 + 7x - 2)$

"Vertical Form" (line up like terms)

"Horizontal Form" (box/circle & combine) $(2x\sqrt[3]{-} 3x/+ 5/+ 4x\sqrt[3]{+} 7x/- 2)$

$$2x^{2} - 3x + 5$$

$$+ 4x^{2} + 7x - 2$$

Subtracting Polynomials:

Example #4

Find the difference of $(3x^2 - 2x + 8) - (x^2 - 4)$

"Vertical Form" (line up like terms)

$$\frac{3x^2-2x+8}{1x^2-4}$$

$$\frac{1x^2-4}{2x^2-2x+12}$$

"Horizontal Form"

5)
$$(x^2 + (1xy - 3y^2) + (-2x^2 - xy + 4y^2) - x^2 + (0xy + y^2)$$

