REPRESENTING A FUNCTION

1	
1	
I .	
I .	
1	
I .	
I .	
I .	
I .	
I .	
I .	
I .	
I .	
I .	
1	
I .	
I .	
I .	
I .	
I .	
I .	
I .	
I .	
1	
I .	
I .	
I .	
1	
I .	
1	
I .	
1	
I .	
I .	
1	
I .	
I .	
I .	
1	
I .	
I .	
1	
I .	
I .	
I .	
1	
1	1

Example

During one hour of walking, you burn about 257 Calories. The total number of Calories burned is a function of the number of hours you walked. How can you represent this situation in four different ways?

Example

During one hour of walking, you burn about 257 Calories. The total number of Calories burned is a function of the number of hours you walked. How can you represent this situation in four different ways?

input(x)	output(()
0	0	
1	257	
2	514	
0	2570	

Example

During one hour of walking, you burn about 257 Calories. The total number of Calories burned is a function of the number of hours you walked. How can you represent this situation in four different ways?

7.2 Notes.notebook April 29, 2014

Example

During one hour of walking, you burn about 257 Calories. The total number of Calories burned is a function of the number of hours you walked. How can you represent this situation in four different ways?

4) Rule

y=257x

Got It?

A freight train travels at 35 miles per hour. How can you represent this situation in four different ways?

Example

Circle the table that could be a view of the function represented by the graph.

2

1

0

Got It?

Which equation could be a view of the function represented by the table?

$$\frac{1. y = -2*}{\text{III. } y = x - 2} \text{ Y= -2(0)} \text{ Y= 0}$$

$$\frac{\text{III. } y = -x + 2}{\text{III. } y = -x + 2} \text{ Y= 0+2} \text{ Y= 2}$$

Х	У
-4	-6
-2	-4
0	-2
2	0
4	2